We have been exposed about odd numbers, even numbers, composite numbers, prime numbers and a lot lot lot of numbers in mathematics since primary school.

Out of all those numbers mentioned above, I am very excited to share a delicious discovery about **Prime Number (The Atoms of Mathematics).**

**A SIMPLE DEFINITION OF PRIME NUMBER**

*a whole number which cannot be divided by any other whole number except 1 and itself*

**THE FIRST 25 PRIMES**

- 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97

Have you eat THE FIRST 25 PRIMES? Did you tasted the sourness in it? I did! The sour taste trigger me to argue **WHY 1 IS NOT A PRIME NUMBER?**

From the definition, it is clearly seen that 1 can be divided by 1 and of course ITSELF! But why it is excluded from the primes? Lets kick the sour out 😋

First of all, we should recall the **Fundamental Theorem of Arithmetic.**

**FUNDAMENTAL THEOREM OF ARITHMETIC**

*every positive whole number can be written as a ***UNIQUE** product of primes

Lets take a bite on this simple snacks;

Take 10 (ten) as an example. Assume 1 is a prime number. By using the Fundamental Theorem of Arithmetic, we have:

10 = 2 x 5 or 5 x 2 (we don’t really mind the order)

10 = 1 x 2 x 5

10 = 1 x 1 x 2 x 5

10 = 1 x 1 x 1 x 2 x 5 (and so on)

From here, we can see if 1 is a prime then we wouldn’t have a **UNIQUE** way of writing 10 as the product of prime numbers. So, that is why 1 is **EXCLUDED** from the list of prime number.

Yummmyy! We solved the mystery of Prime Number deliciously. 🍦

Till the next lunch date everyone!!!

### Like this:

Like Loading...

*Related*

Wow! I’ve never thought about this before. Tq for the post.

LikeLike